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Abstract.

In the first part of my talk, we consider special metrics on holomor-
phic bundles. We will recall the classical Hitchin-Kobayashi correspon-
dence (Donaldson-Uhlenbeck-Yau theory) of stability and Hermitian-
Einstein metrics on holomorphic vector bundles; and some generaliza-
tions of the classical Hitchin-Kobayashi correspondence, specially, we
will focus on non-compact case; furthermore, We’ll discuss the Dirich-
let boundary problem of Hermitian-Einstein equations (or quiver Vor-
tex equations) and some related heat flow in gauge theory.

In the second part of my talk, also I’ll introduce a uniqueness result
about constant σk curvature Kähler metrics.
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1 Hitchin-Kobayashi type correspondences (com-

pact case)

1.1 The classical Hitchin-Kobayashi correspondence

Let (M, η) be a compact Kähler manifold, η is the Kähler form, and
let E be a holomorphic vector bundle over M .

The stability of holomorphic vector bundles was a well estab-
lished concept in algebraic geometry. A holomorphic vector bundle E

is called stable , if for every coherent sub-sheaf E ′ ↪→ E of lower rank
(or, weakly holomorphic sub-bundle) it holds µ(E ′) < µ(E). Where
the η-slope of E ′ is the quotient

µ(E ′) =
degη(E

′)
rankE ′ , (1.1)

and the η-degree of E ′ is defined as follow

degη(E
′) =

∫

M
C1(E

′) ∧ ηn−1, (1.2)

C1(E
′) is the first chern class of E ′

Hermitian-Einstein metric this notion was introduced by Kobayashi
in 1980 in any arbitrary holomorphic vector bundle over a complex
manifold, which can be seen as a generalization of a Kähler-Einstein
metric in the tangent bundle.

A Hermitian metric H in E is called a Hermitian-Einstein metric, if
the curvature FH of the chern connection AH in (E, H) (i.e. the unique
H-unitary integrable connection AH in E inducing the holomorphic
structure ∂̄E) satisfies the Einstein condition:

√−1ΛηFH = γIdE, (1.3)

here Λη denotes the contraction of differential forms by Kähler form
η, and the real constant γ is given by γ = 2π

(n−1)!V ol(M)µ(E).



Special metrics in Complex Geometry 3

A H-unitary connection A is called Hermitian-Einstein if it’s curvature 2-form
FA is of type (1,1), and satisfies the above Einstein condition

The classical Hitchin-Kobayashi correspondence states that
a holomorphic structure is stable if and only if it is simple (i.e. it
admits no non-trivial trace free infinitesimal automorphisms ) and ad-
mits a Hermitian-Einstein metric. General solutions of the Hermitian-
Einstein equation correspond to polystable holomorphic structure, i.e.
to bundles which are direct sum of stable bundle of the same slope.

A short history of the proof of the Hitchin-Kobayashi correspondence.

Narasimhan and Seshadri ([NS], 1965) , Donaldson ([Do1], 1983,), for Riemann
surface.

Donaldson ([Do2],1985) for algebraic surfaces.
Uhlenbeck and Yau ([UY], 1986) for Kähler manifolds.
Li and Yau ([LY], 1987) for Hermitian manifolds with Gauduchon metric (i.e.

∂∂̄(ηn−1) = 0).
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1.2 Some generalizations of the classical Hitchin-Kobayashi
correspondence

The classical Hitchin-Kobayashi correspondence has several interesting and impor-
tant generalization and extensions. Below we sketch three problems of this type,
and in every case we briefly explain what the corresponding Hitchin-Kobayashi cor-
respondence asserts.

1, Higgs bundle
Higgs bundles were first studied by Hitchin [Hi] when M is a com-

pact Riemann surface and Simpson [Si] when M is higher dimensional,
who introduce a natural gauge equation for them and proved a Hitchin-
Kobayashi correspondence.

A Higgs bundle on M is a pair (E, θ) consisting of a holomor-
phic vector bundle E, and an End(E)-valued holomorphic form θ ∈
H0(M, Ω1 ⊗ End(E)) satisfying the identity θ ∧ θ = 0.

A Higgs bundle is called Stable if the usual stability condition
(µ(E ′) < µ(E)) hold for all proper θ-invariant sub-sheaves; and is
called polystable if it is a direct sum of stable Higgs sub-bundle of the
same slope.

A Hermitian metric H in Higgs bundle (E, θ) is called Hermitian-
Einstein (or Hermitian Yang-Mills ) if the curvature F of the (in
general non-integrable and non-unitary) connection A = ∂̄E+θ+∂H+θ̄

satisfies the Einstein condition
√−1ΛF = cIdE.

The Hitchin-Kobayashi correspondence for Higgs bundles
asserts that: a Higgs bundle admits a Hermitian-Einstein metric if
and only if it is polystable.
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2, Vortices (holomorphic pair).

Different to the Higgs bundle, Bradlow [Br1], [Br2] consider holo-
morphic vector bundles on which additional data in the form of a pre-
scribed holomorphic global section φ ∈ Γ(E) is given, i.e. holomorphic
pair (E, φ). Bradlow investigate the follow vortex equation

2
√−1ΛFH + φ⊗ φ∗ − τIdE = 0, (1.4)

where φ∗ is the adjoint of φ with respect to metric H, and τ is a real
number. This equation generalizes the Hermitian-Einstein equation
and is the analog of the classical vortex equation over R2. Equiva-
lently, on Hermitian vector bundle (E, H) we can consider vortices,
i.e. pairs (A, φ) consisting of an integrable unitary connection A and
a holomorphic section φ, satisfying the vortex equation

2
√−1ΛFA + φ⊗ φ∗ − τIdE = 0.

The holomorphic pair (E, φ) is called τ-stable if it satisfies the
following two conditions:

(1), It holds 2π
(n−1)!V ol(M)µ(E) < τ , and 2π

(n−1)!V ol(M)µ(E ′) < τ for all

reflexive sub-sheaves E ′ ↪→ E with 0 < rank(E ′) < rankE.
(2), rµ(E)−r′µ(E′)

r−r′ > τV ol(M)
4π , for every reflexive sub-sheaves E ′ with

0 < rankE ′ = r′ < r such that φ ∈ E ′ almost everywhere.

The Hitchin-Kobayashi correspondence asserts that there ex-
ist a Hermitian metric satisfying τ -vortex equation if and only if the
holomorphic pair (E, φ) is τ -poly-stable.
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(3), Holomorphic triple

Holomorphic triple (E1, E2, φ)consisting of two holomorphic vector
bundles E1, E2 over complex manifold M and a holomorphic morphism
φ : E2 → E1 (i.e. ∂̄E1⊗E∗

2
φ = 0). The coupled vortex equation, as a

generalization of the vortex equations, were introduced by Garcia-
Prada [GP1]([BG]). The equations we shall consider are

{
√−1ΛFH1

+ 1
2φ ◦ φ∗ − τ1IdE1

= 0,√−1ΛFH2
− 1

2φ
∗ ◦ φ− τ2IdE2

= 0.
(1.5)

Where H1 and H2 are Hermitian metrics on bundles E1, E2 respec-
tively.

Definition 1.1 A triple T ′ = (E ′
1, E

′
2, φ

′) is a sub-triple of (E1, E2, φ)
if

(1), E ′
i is a coherent sub-sheaf of Ei, for i = 1, 2.

(2), i1 ◦ φ′ = φ ◦ i2, where i1 and i2 are inclusion maps.

Definition 1.2 Let σ (in fact, σ = 2π
V ol(M)τ1) be a real number,

define the σ-degree and σ-slope of a subtriple T ′ = (E ′
1, E

′
2, φ

′) by

degσ(T
′) = deg(E ′

1 ⊕ E ′
2) + r′2σ, (1.6)

µσ(T
′) =

degσ(T
′)

r′1 + r′2
.

Definition 1.3 The triple T = (E1, E2, φ) is called σ-stable if for
all non-trivial sub-triples T ′ we have µσ(T

′) < µσ(T ).

Bradlow and Garcia-Prada [BG] proved the following Hitchin-Kobayashi
type correspondence.
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The holomorphic triple exists a solution of the coupled vortex equa-
tions if and only if it is σ-stable, in fact, σ = 2π

V ol(M)τ1.

Holomorphic pair can be seen as a special case of holomorphic
triple, i.e. let E2 be a line bundle L on M , (E, L, φ) = (E, φ). In [GP1],
Garcia-prada show that the above coupled vortex equation can also
be obtained via dimensional reduction of classical Hermitian-Einstein
equations under an SU(2) action on certain associated bundles on the
manifold M × CP 1 (η ⊗ σωCP 1). Recently, Garcia-prada’s idea has
been used by Tian and Yang to discuss the compactification of the
moduli space of vortices and coupled vortices.

Recently, the above results of holomorphic triple had been ex-
tended to holomorphic chain case by Alvare-consal and Garcia-
prada [AG1]. Furthermore, their result has been extended by Mundet
i Riera [MR] to more general Kähler fibration, and by Alvare-Consul
and Garcia-Prada [AG2],[AG3] to twisted quiver bundles. In [Zh1],
we obtained a Hitchin-Kobayashi type for twisted quiver bundles over
hermitian manifolds with Gauduchon metrics.
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(4), Twisted quiver bundle

Twisted quiver bundles over Kähler manifolds were studied by
Alvare-Consul and Garcia-Prada [AG2],[AG3].

A quiver Q consists of a set Q0 of vertices v, v′,· · ·, and a set Q1

of arrows a : v → v′ connecting the vertices. Given a quiver Q and a
compact Kähler manifold M , a quiver bundle is defined by assigning
a holomorphic vector bundle Ev to a finite number of vertices and a
homomorphism φa : Ev → Ev′ to a finite number of arrows. A quiver
sheaf is defined by replacing the term ”holomorphic vector bundle ”
by ”coherent sheaf” in the above definition. If we fix a collection of
holomorphic vector bundles Ẽa parametrized by the set of arrows, and
the morphisms are φa : Ev ⊗ Ẽa → Ev′, twisted by the corresponding
bundles, we have a twisted quiver bundle or a twisted quiver sheaf.

In [AG2] Alvare-Consul and Garcia-Prada defined natural gauge-
theoretic equations, quiver vortex equations, for a collection of Her-
mitian metrics on the bundles associated to the vertices of a twisted
quiver bundle. To solve these equations, they introduced a stability
criterion for twisted quiver sheaves, and proved a Hitchin-Kobayashi
correspondence, relating the existence of Hermitian metrics satisfy-
ing the quiver vortex equations to the stability bundle.

The above result generalized many known results for bundles with
extra structure. For examples: Higgs bundles, holomorphic pair , holo-
morphic triple, holomorphic chain . It should be pointed out Alvare-
Consul and Garcia-Prada’s results ([AG2],[AG3]) can not be derived
from the general Hitchin-Kobayashi correspondence scheme developed
by Banfield [5] and further generalized by Mundet i Riera [MR]. This
is due not oly to the presence of twisting vector bundles, but also to
the deformation of the Hermitian-Einstein terms in the equations.
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2 Hitchin-Kobayashi correspondence over non-compact

Kähler manifolds

In this section, we will give a Hitchin-Kobayashi type correspondence
for holomorphic triples over some non-compact Kähler manifolds. Our
method can also be suited in other more general cases (for example
twisted quiver bundle ), but for simplicity, we only discuss the coupled
vortex equations

{
√−1ΛFH1

+ 1
2φ ◦ φ∗ − τ1IdE1

= 0,√−1ΛFH2
− 1

2φ
∗ ◦ φ− τ2IdE2

= 0.
(2.1)

Holomorphic triple consisting of two holomorphic vector bundles E1, E2

over complex manifold M and a holomorphic morphism φ : E2 → E1

(i.e. ∂̄E1⊗E∗
2
φ = 0), where H1 and H2 are Hermitian metrics on bundles

E1, E2 respectively.

It should be point out that Simpson [Si] had discussed Higgs bundle
over non-compact cases under some conditions, Li,jianyu and Wang,youde
[LW] generalized Simpson’s result under more weaker assumption.
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Let M be an non-compact Riemannian manifold satifying the fol-
lowing assumptions:

Assumption 1. M has finite volume.

Assumption 2. There exists an exhaustion non-negative function
ϕ on M with 4ϕ bounded.

Assumption 3. There is an increasing function α : [0,∞) →
[0,∞) with α(0) = 0 and α(x) = x for x > 1,such that if f is a
bounded positive function on M with 4f ≥ −B then

sup
M
|f | ≤ C(B)α(

∫

M
|f |).

Simpson [Si, Proposition 2.1 and Proposition 2.2] proved that if
(M,ω) is a Zariski open subset of a smooth compact Kähler manifold
M (i.e. M−M is a smooth divisor )and the metric ω is the restriction
of a smooth Kähler metric on M , then the above assumption hold for
(M,ω).

We will use the heat flow method to solve coupled vortex (2.1) which is similar
with that used by Simpson in Higgs bundles case, but the main different point in
our proof is to find good initial metrics on holomorphic triples by using conformal
transformation, this is not trivial when the Kähler manifold is non-compact. In
fact, we can find Hermitian metrics K1 on bundle E1 and K2 on bundle E2 by
conformal transformation such that

Tr(
√−1ΛFK1) + Tr(

√−1ΛFK2) = Constant. (2.2)

If H = efK, we have 2Tr(
√−1ΛFH) = 2Tr(

√−1ΛFK) − n4f . In order to
obtain the above good initial Hermitian metrics, we shall first solve the following
Kazdan-Warner equations over non-compact Riemannian manifolds.
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2.1 The Kazdan-Warner type equations on non-compact
Riemannian manifolds

Let M be a Riemannian manifold, and let h, g ∈ C∞(M), we con-
sider the following equation on M ,

4f + hef − g = 0. (2.3)

Equation (2.3) is almost in the form of a non-linear PDE analysed
by Kazdan and Warner [KW1]. Where they want to find Rieman-
nian metrics on a compact manifold such that its Gaussian curvature
is a given function. When M be a compact Riemannian manifold
(without boundary), we can solve the following Poisson equation,

4v = g − c, (2.4)

where c =
∫

M
g

V ol(M) . Define

w = f − v.

Then f is a solution to (2.3) iff w is a solution to

4w + (hev)ew − c = 0. (2.5)

Theorem 2.1 (Kazdan-Warner) Let M be a compact Rieman-
nian manifold. Consider the equation

4u + heu − c = 0 (2.6)

where h ∈ C∞(M) is not identically zero and c is a real constant.
Then

(1), if c = 0 a necessary condition for existence of u ∈ C∞(M)
satisfying (2.6) is that h change sign on M .
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(2), if c > 0 a necessary condition for existence of u ∈ C∞(M)
satisfying (2.6) is that h is strictly positive somewhere on M .

(3), if c < 0 and h ≤ 0 then there is a unique u ∈ C∞(M) which
satisfies (2.6).

Kazdan and Warner [KW2]also discussed the above equation on all
non-compact 2-dimensional manifolds realizable as open sub-manifolds
as compact 2-manifolds. Now, we want to consider the equation (2.3)
on some non-compact higher dimensional Riemannian manifolds.

Theorem 2.2 [Zh2] Let M be a non-compact Riemannian man-
ifold satisfying the above assumption 1,2,3. We consider the equation

4f + hef − g = 0. (2.3)

and suppose that h, g ∈ C∞(M) and supM(|g|+ |h|) ≤ ∞. Then
(1), if h ≡ 0 and

∫
M g = 0, i.e. the equation (2.3) is just the Poisson

equation, there exists f ∈ C∞(M) satisfying (2.3) and supM |f | < ∞.
(2), if h ≤ 0 is not identically zero and

∫
M g < 0, then there is a

unique f ∈ C∞(M) which satisfies (2.3) and supM |f | < ∞.

Remark: We use the heat flow method to prove the above theorem.
We first solve the heat equation

∂f

∂t
= 4f + hef − g

satisfying the Neumann boundary condition with initial data 0 on any
exhaustion subset Ma of M , then using the exhaustion method we can
prove there is a longtime solution f(·, t) of the heat flow on M .

the main point in our proof is to obtain an uniform C0 bound for
f(·, t), then we can choose a subsequence tj → such that f(·, tj) → f∞
where f∞ is just a solution of (2.3).
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Using the above theorem we can solve the following vortex equa-
tions on holomorphic linear bundle L over some non-compact Kähler
manifolds (M, η).

2
√−1ΛFH + φ⊗ φ∗ − τIdL = 0, (2.7)

where φ is a nontrivial holomorphic section L, φ∗ is the adjoint of φ

with respect to metric H, and τ is a real number, here Λη denotes the
contraction of differential forms by Kähler form η.

When L is a linear holomorphic bundle, given any initial metric K,
let H = efK, then solving the Vortex equation (2.7) is equivalent to
solve the following

4f − |φ|2Kef − (2
√−1ΛFK − τIdL) = 0. (2.8)

Setting h = −|φ|2K and 2
√−1ΛFK − τIdL = g, (2.8) is just equation

(2.3).
Using Theorem 2.2, we have

Corollary 2.3 Let (M,ω) satisfies the above assumption 1,2,3,(for
example a Zariski open subset of a smooth compact Kähler manifold
) and L be a linear holomorphic bundle with a nontrivial holomorphic
section φ on M . Suppose that there exist a Hermitian metric K satis-
fying that supM |ΛFK | < ∞, supM |φ|2K ≤ ∞ and

∫
M 2

√−1ΛFK < τ .
Then there is a Hermitian metric H satisfies the vortex equations
(2.7).
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2.2 Coupled Vortex equations over non-compact Kähler
manifolds

Then, we consider the following heat equation





H−1
1

∂H1

∂t = −2(
√−1ΛFH1

+ 1
2φ ◦ φ∗ − τ1IdE1

),

H−1
2

∂H2

∂t = −2(
√−1ΛFH2

− 1
2φ

∗ ◦ φ− τ2IdE2
).

(2.9)

And let the good metrics (K1, K2) be the initial datas. Then we
can obtain a longtime solution (H1, H2) of the above heat flow, under
the analytic stable condition, we can prove the longtime solution must
convergence to a solution of coupled vortex equation (2.1) by choosing
a subsequence. So we obtain

Theorem 2.4 Let (M,ω) satisfies the above assumption 1,2,3, and
suppose (E1, E2, φ) is a holomorphic triple with a 2-tuple of Hermitian
metrics (K1, K2) satisfying the assumption that supM(

∑2
i=1 |ΛFKi

| +
|φ|K) < ∞ . Suppose (E1, E2, φ) is analytic stable with respect to
metrics K1, K2. Then there is a 2-tuple of Hermitian metrics (H1, H2)
satisfy the coupled vortex equations

{
√−1ΛFH1

+ 1
2φ ◦ φ∗ − τ1IdE1

= 0,√−1ΛFH2
− 1

2φ
∗ ◦ φ− τ2IdE2

= 0.

where real numbers τ1 and τ2 satisfy
∫

M
Tr(

√−1ΛFK1
+
√−1ΛFK2

) = rank(E1)τ1 + rank(E2)τ2

.
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Analytic stable
A triple T ′ = (E ′

1, E
′
2, φ

′) is a sub-triple of (E1, E2, φ) if
(1), E ′

i is a coherent sub-sheaf of Ei, for i = 1, 2.
(2), i1 ◦ φ′ = φ ◦ i2, where i1 and i2 are inclusion maps.

Since E ′
i is a coherent sub-sheaf of Ei then outside of complex co-

dimension 2 it is a sub-bundle of Ei. The metric Ki restricts to a
metric on E ′

i outside complex co-dimension two. Let πi : Ei → E ′
i

denote the projection onto E ′
i using the metric Ki,it is also defined

outside complex codimension two. So we can define the degree by
integrating outside complex co-dimension two.

The τ -degree and τ -slope of a sub-chain T′ with respect to metric
K, are defined by

degτ(T
′,K) =

∫
M [

∑2
i=1(Trπi ◦ θi(K; τ)− |∂Ei⊗E∗

i
πi|2K)

−|φ⊥|2K ]ω[m],

µτ(T
′, K) = degα(T′,K)∑2

i=1 rankE′
i

,

respectively. Where

φ⊥ = π1 ◦ φ ◦ (IdE2
− π2),

θ1 =
√−1ΛFK1

+
1

2
φ ◦ φ∗ − τ1IdE1

,

θ2 =
√−1ΛFK2

− 1

2
φ∗ ◦ φ− τ2IdE2

.

We say that the holomorphic triple T = (E1, E2, φ) is analytic τ -(semi)
stable with respect to metric K if for all proper sub-triple T′ ↪→ T,

µτ(T
′,K) < (≤)µτ(T,K).
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3 Dirichlet problem for Hermitian-Einstein equa-

tions

Let M be the interior of compact Hermitian manifold M with smooth
non-empty boundary ∂M , and the Hermitian metric is smooth and
non-degenerate on the boundary. holomorphic bundle E is defined
over M . We consider the following Dirichlet problem for any given
data ϕ on ∂M . 




√−1ΛFH = λId,
H|∂M = ϕ.

(3.1)

we obtain the unique solubility of the above Dirichlet problem for
Hermitian-Einstein equations.

Theorem 3.1[Zh3] Assume that E is a holomorphic bundle over
the compact Hermitian manifold M̄ with non-empty boundary ∂M For
any Hermitian metric ϕ on the restriction of E to ∂M there is a unique
Hermitian-Einstein metric H on E such that H = ϕ over ∂M .

Donaldson(1992) had solved the above Dirichlet problem over Kähler
manifolds. So, our theorem can be seen as a generalization of Donald-
son’s result.

Recently, We [Zh4] solved the Dirichlet problem for Vortex equa-
tion, and Wang [Wang1] for coupled Vortex equation. In fact, by
similar discussion, we can also solve the Dirichlet problem for more
general cases (for example the related gauge equations for quiver bun-
dles over Hermitian manifolds.)
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4 some related heat flows in gauge theory

Given a vector bundle E over a closed (i.e. compact and without
boundary) Riemannian manifold (M, g), suppose that the bundle E

has a Riemannian structure. The Yang-Mills functional is defined on
the space of connections of E, here all connections are required to be
compatible with the Riemannian structure of E, as follows

Y M(A) =
∫

M
|FA|2 dVg, (1)

where A is a connection and FA denotes its curvature and dVg is the
volume form of g. We call A a Yang-Mills connection of E if A is a
critical point of the Yang-Mills functional i.e. satisfies the Yang-Mills
equation

D∗
AFA = 0, (2)

where D∗
A is the adjoint operator of the covariant differentiation asso-

ciated with the connection A.
The Yang-Mills-Higgs functional is defined through a connection A

and a section u of the bundle E

Y MH(A, u) =
∫

M
[|FA|2 + |DAu|2 +

1

4
(1− |u|2)2] dVg. (3)

The Yang-Mills-Higgs fields (A, u) are the critical points for the above
Yang-Mills-Higgs functional. Equivalently, the pair (A, u) satisfy the
following Yang-Mills-Higgs equations:





D∗
AFA = −1

2(DAu⊗ u∗ − u⊗ (DAu)∗),
D∗

ADAu = 1
2u(1− |u|2), (4)

where u∗ denote the dual of u respect to the given metric. The Yang-
Mills-Higgs theory can be seen as a generalization of the Yang-Mills
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theory. For further discussions on its physical significance, we refer
the readers to [JT].

In this section, we are interested in a more general case. Let
(E1, H1) and (E2, H2) be two Riemannian vector bundles on the man-
ifold (M, g), and let Ai denote the set of all connections on (Ei, Hi).
consider the following Yang-Mills-Higgs type functional, which will be
called Coupled Yang-Mills-Higgs functional (CYMH), on A1 × A2 ×
Ω0(E1 ⊗ E∗

2),

Y MH(A1, A2, φ) =
∫
M |FA1

|2 + |FA2
|2 + |DA1⊗A∗2φ|2

+1
4|φ ◦ φ∗ − τ1IdE1

|2 + 1
4|φ∗ ◦ φ− τ2IdE2

|2dVg,
(5)

here τ1 and τ2 are real parameters. We denote the integrand above
by e(A1, A2, φ) and call it the CYMH action density for the triple
(A1, A2, φ).

We call a triple (A1, A2, φ) a Coupled Yang-Mills-Higgs field if it
is a critical point of the above CYMH functional, i.e. it satisfies the
following equations





D∗
A1

FA1
+ 1

2(DA1⊗A∗2φ ◦ φ∗ − φ ◦ (DA1⊗A∗2φ)∗) = 0,
D∗

A2
FA2

− 1
2(φ

∗ ◦DA1⊗A∗2φ− (DA1⊗A∗2φ)∗ ◦ φ) = 0,
D∗

A1⊗A∗2
DA1⊗A∗2φ + φ ◦ φ∗ ◦ φ− τ1+τ2

2 φ = 0.
(6)

Where φ∗ denotes the dual of φ with respect to the given Riemannian
structures, and A∗

2 denotes the induced connection on the dual bundle
E∗

2 . In the case of triples (E1, E2, φ) where E2 is a line bundle, then the
above Coupled Yang-Mills-Higgs equations are just the Yang-Mills-
Higgs equations (setting τ1 = τ2 = 1

2). So the Coupled Yang-Mills-
Higgs field generalizes the Yang-Mills-Higgs field.

When (E1, H1) and (E2, H2) be Hermitian vector bundles on a com-
pact Kähler manifold (M,ω). Consider integrable connections Ai on
(Ei, Hi) (i = 1, 2) and a section φ of E1 ⊗E∗

2 . The equations we shall
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consider are




∂A1×A∗2φ = 0,

ΛFA1
−

√−1
2 φ ◦ φ∗ +

√−1
2 τ1IdE1

= 0,

ΛFA2
+

√−1
2 φ∗ ◦ φ +

√−1
2 τ2IdE2

= 0,

(7)

where the operator Λ is the contraction with ω. The above equa-
tions are called the Coupled vortex equations which were introduce
by Garcia-Prada in [GP], and solutions (A1, A2, φ) of them are called
Coupled vortices on (E1, E2). By the Chern-Weil theory, τ1 and τ2

must satisfy the following relation

τ1rankE1 + τ2rankE2 = 4π
degE1 + degE2

V ol(M)
, (8)

so that there is only one independent parameter τ1.
In fact, Coupled vortices are the absolute minima of the above

Coupled Yang-Mills-Higgs functional, so Coupled vortices must be
Coupled Yang-Mills-Higgs fields. In [GP], Garcia-Prada established
the Hitchin-Kobayashi correspondence between stable triples and ex-
istence of Coupled vortices. So, the existence result of Coupled Yang-
Mills-Higgs fields had been obtained on Hermitian bundles.

The Yang-Mills flow was first suggested by Atiyah-Bott in [AB].
Donaldson [Do] used this to establish a connection between Hermitian-
Yang-Mills connections and holomorphic stable bundles. He did this
by proving the global existence of the Yang-Mills flow in a holomor-
phic bundle over a Kähler manifold. Global existence and uniqueness
had been established by Struwe [St] for the Yang-Mills flow in a vec-
tor bundle over a compact Riemannian Four-manifold for given initial
connection with finite energy. For general vector bundles, it is still un-
known whether or not the Yang-Mills heat flow develops singularities
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in finite time. In [CS1], Chen and Shen established the monotonicity
formula and the small action regularity theorem for the Yang-Mills
flows in higher dimension. In [CS2], [CSZ], [DW] and [HT], the au-
thors analyze the asymptotic behavior of the Yang-Mills flow and the
Yang-Mills-Higgs flow.

In the following, we (cooperated with Wang Yue )discuss the evo-
lution equations of the Coupled Yang-Mills-Higgs equations (6). A
regular solution of the Coupled Yang-Mills-Higgs flow is given by a
family of triples (A1(x, t), A2(x, t), φ(x, t)) such that





∂A1

∂t = −D∗
A1

FA1
− 1

2(DA1⊗A∗2φ ◦ φ∗ − φ ◦ (DA1⊗A∗2φ)∗),
∂A2

∂t = −D∗
A2

FA2
+ 1

2(φ
∗ ◦DA1⊗A∗2φ− (DA1⊗A∗2φ)∗ ◦ φ),

∂φ
∂t = −D∗

A1⊗A∗2
DA1⊗A∗2φ− φ ◦ φ∗ ◦ φ + τ1+τ2

2 φ.
(9)

We first discuss some properties of the Coupled Yang-Mills-Higgs flow,
including the energy inequality, Bochner-type inequality, monotonicity
of certain quantities and a small action regularity theorem. Then we
discuss the asymptotic behavior of a regular Coupled Yang-Mills-Higgs
flow, proving the following theorem

Theorem 4.1 [WZ] Let (E1, H1) and (E2, H2) be two Rieman-
nian vector bundles on a compact Riemannian manifold (M, g). Let
(A1, A2, φ)(x, t) be a global smooth solution of the Coupled Yang-Mills-
Higgs flow (9) in M × [0,∞) with smooth initial. Then there exists
a sequence {ti} such that, as ti → ∞, (A1, A2, φ)(x, ti) converges,
modulo gauge transformations, to a Coupled Yang-Mills-Higgs field
(A1, A2, φ)(·,∞) in smooth topology outside a closed set Σ whose Haus-
dorff codimension is at least 4.
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5 Kähler metrics with constant σk curvature

One of the major problems in Kähler geometry is the study of extremal
metrics, especially Kähler-Einstein metrics, constant scalar curvature
Kähler metrics.

Let (M,ω) be a compact Kähler manifold of complex dimension
n,and assume the first Chern class of M to be negative or zero. Then
by the celebrated work of Yau [Y1] (see also Aubin [A]) we know that
M admits a Kähler-Einstein metric. The remaining case c1(M) > 0 is
more difficult and still open. In [C] Calabi proposed that, when one
exists,a constant scalar curvature Kähler (cscK) metric should pro-
vide a canonical representative for a given Kähler class. Since this
suggestion. much work has focused on the topic. The general exis-
tence theory has been looked at in depth, motivated by a well-known
conjecture relating the existence of a cscK metric in the first Chern
class of an ample line bundle L to the K-stability of the polarisation
defined by L. This was first suggested by Yau [Y2] in the Kähler-
Einstein case and then by Tian [T], Donaldson [D] in the cscK case.
The difficulty, from the analytic viewpoint, in determining whether or
not a cscK metric exists is that the resulting PDF is fourth order and
fully non-linear.

It is well known ([B]) that if c1(M) = 0, or if c1(M) is positive
or negative definite and Ω = ±2πc1(M), then a Kähler metric with
constant scalar curvature in Kähler class Ω has to be Kähler-Einstein.
In [CT], X.X.Chen and G.Tian have introduced a family of functionals
Ek (0 ≤ k ≤ n) which generalize the Mabuchi energy νω = E0, and
used E1 in their study of the Kähler-Ricci flow. The critical point of
Ek are the functions φ such that ωφ = ω +

√−1∂∂̄φ satisfies

σk(ωφ)−4φσk−1(ωφ) = µ̄k. (1)

Where σk(ω) is the k-th symmetric polynomial of the Ricci tensor,
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and µ̄k is a constant depending only on c1(M). For k = 0 we see that
the critical metrics are precisely cscK metrics. Under the assumptions
c1(M) > 0 and [ω] = 2πc1(M), Chen and Tian [CT] have shown that
critical metrics for En with positive Ricci curvature must be necessarily
Kähler-Einstein. In a recent paper [To] Tosatti proved that a Kähler
metric ω in the anti-canonical class which is critical for Ek and has
non-negative Ricci curvature,then ω is Kähler-Einstein.

In this section, we (with Guan pengfei) consider Kähler metrics
with constant σk curvature. Under some hypotheses on orthogonal bi-
sectional curvature, we can show that a Kähler metric with constant
scalar curvature must be Kähler-Einstein. Furthermore, we conclude
a similar result about Kähler metric with constantly positive σk cur-
vature. In fact we obtain the following theorem.

Definition 5.1 We say that the orthogonal bisectional curvature is
nonnegative means that Rīijj̄ ≥ 0 for any i 6= j, choosing the normal
coordinate near the considered point.

Theorem 5.2 [GZ] Let (M,ω) be a Kähler manifold , and assume
that the orthogonal bisectional curvature of ω is nonnegative and is
positive at least at one point. If ω is of constantly scalar curvature,
then it must be Kähler-Einstein. Furthermore, fix 1 < k ≤ n and
assume that ω has constantly positive σk curvature, and it’s Ricci
curvature is nonnegative at least at one point; then it must be Kähler-
Einstein.

The main point in our proof is to use the fact that (σk)
1
k is concave.

We known that the positivity of holomorphic bisectional curvature can
deduce the positivity of orthogonal bisectional curvature and Ricci
curvature. So we have the following conclusion.
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Corollary 5.3 Let (M,ω) be a Kähler manifold , and assume
that the holomorphic bisectional curvature of ω is nonnegative and is
positive at least at one point. Fixing 1 ≤ k ≤ n, if ω has constantly
σk curvature, then it must be Kähler-Einstein.
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